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Abstract —The equivalent circuit of a via which connects tsvo semi-

infinitely long transmission lines through a circular hole in a ground plane

is considered. The T-W equivalent circnit consists of two excess capaci-

tances and an excess inductance. They are qnasi-static quantities and thus

are computed statically by the method of moments from the integral

equations. The integral equations are established by introducing a sheet of

magnetic current in the electrostatic case and a layer of magnetic charge in

the magnetostatic case. Parametric plots of the excess capacitances, the

excess inductance, and the characteristic admittance of the via are given

for reference.

I. INTRODUCTION

T HE GEOMETRY of the problem to be considered in

this paper is shown in Fig. 1. Two semi-infinitely long

transmission lines, wire 1 and wire 2, are connected by a

via through a hole in a conducting ground plane. The via

consists of wire 3 and wire 4. The radii of wires 1, 2, 3, 4,

and the hole, denoted al, az, a3, a3, an d a5, respectively,

are very small compared to the heights, h ~ and h ~, of wire

1 and wire 2 with respect to ground. The media in the

upper region (region a) and the lower region (region b)

may be different. Let us assume that (cl, PI) and (c z, p ~)

are the constitutive constants for region a and region b,

respectively. Also, the media and all the conductors are

perfect (lossless). For simplicity, the equivalent circuit of

the via is assumed to be n-type, as is shown in Fig. 2. In

Fig. 2, YOI is the characteristic admittance of wire 1 above

the ground plane and Y02 is the characteristic admittance

of wire 2 below the ground plane. The circuit of Fig. 2 is

valid when only a small portion of the line voltage is

dropped across L, and when only a small portion of the

line current is shunted through C,l and Ce2. We desire to

determine the capacitances C,l and Cez and the inductance

L=. The problem described here is of practical interest. For

example, printed circuits on different sides of a ground

plane inside computers are often connected by a via
through a hole in the ground plane. The related problems

of the connection of two perpendicular strips above a

ground plane [1], the connection of two parallel wires
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Fig. 1. The geometrical structure of the problem

,T Le ,T
,

●
1
1 ●

I I ,

Fig 2 The equivalent circuit for the problem,

above a ground plane [2], and the connection of two

parallel strips above a ground plane [3], [4] were previously

considered.

The equivalent capacitance C,l of the portion of the via

above the ground plane is a quasi-electrostatic quantity
and is defined as [2], [3]

QI + Q3 – flqo,
Cel = lim

II-w v“
(1)

Here QI is the total electric charge on the portion of wire 1

of length 11, Q3 is the total charge on wire 3, V is the

constant voltage maintained at the surface of the wires

with respect to ground, and qol is the uniform charge

density on wire 1 far away from the via, or equivalently,

the charge density required to raise the potential of wire 1
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to V volts if the hole were closed, wire 3 were removed,

and wire 1 were extended to infinity. Henceforth in the

electrostatic case, charge density means charge per unit

length. However, since the numerator of the right-hand

side of (1) approaches a constant that is very small com-

pared to QI and llqOl, as /l becomes large, numerical

calculation of CeI from (1) would result in significant

error. To avoid this, we subtract the uniform charge den-

sity from the total charge density so that the difference,

called the excess charge density, is the unknown in the

boundary integral equations. The equivalent capacitance

C,l is then the sum of the total excess charge on wire 1 and

wire 3 if the voltage V is set to one volt. Hence C,l is also

called the excess capacitance of the upper part of the via

(wire 3). In a similar manner, the equivalent capacitance

Ce2 is defined and is called the excess capacitance of the

lower part of the via (wire 4).

The equivalent inductance L, is a quasi-magnetostatic

quantity defined by [2], [4]

L,=;
{f

~ire,(’4, - Ale).d+ ~ire3/13.df
}

1
+7

{J }
~ire2(A2- A20).d+~ire4A4. dl (2)

where A, is the total magnetic vector potential on wire i,

i =1,2,3,4, due to the steady electric current of filamen-

tary strength 1 flowing from wire 1 through the via to wire

2. A,0 is the uniform magnetic vector potential on wire 1

b

‘7t – Wwe 3
Wire I

Region a

Ground

II Wire 2

I L__L_._—
L--- d
(h)

Fig. 3. The electrostatic problem divided into two parts. (a) The electric
field remains unchanged in region a if the hole is closed and M is

placed above the hole. (b) The electric field remains unchanged m
region b if the hole is closed and – M is placed just below the hole.

and region b if

a+a a+b
61an ‘C2an

in the hole (4)

where @ is the electric potential in region i, i = a, b. In

addition to (4) the following boundary conditions must

also be satisfied:

+a=v on wires 1 and 3

O’=V
(5)

on wires 2 and 4.

Neither wire 3 nor wire 4 is connected to the ground plane

far away from the via or, equivalently, ;he magnetic vector in Fig.

potential that would be produced by an 1 ampere current The

on wire 1 if the hole were closed, wire 3 were removed, and of the

wire 1 were extended to infinity. A 20 is similarly defined. i.e.,

The sum of the four integrals in (2) is a line integral from a

point far to the left on the surface of wire 1 to a point far

to the right on the surface of wire 2. Equation (2) is

derivable from [4, eq. (l)]. Le is also called the excess

inductance of the via. For convenience, we call the first

bracketed term the excess inductance of the utmer via

3.

total charge density may be recognized as the sum

excess charge density and uniform charge density,

(4,1 + 401 on wire 1

14,3 on wire 3
q=

4.4 on wire 4

(Z.2 + 402 on wire 2

(6)

(wire 3) and the second bracketed term the exce&’ induc-
where the subscript e on q denotes excess charge density.

tance of the lower via (wire 4). qol and qo2 are known and are given by

II. FORMULATION

The excess capacitances C,l and C,2 are quasi-electro-

static quantities and thus computed in the electrostatic

case. As shown in Fig. 3, we first close the hole by a

conductor and place a sheet of magnetic current ill just

above the hole and – M just below it. Steady in that it has

no surface divergence, this magnetic current is related to

the electric field EA over the hole by

M= EAxn (3)

where n is the unit vector normal to the ground plane and

pointing upwards (from region b to region a). By the

uniqueness theorem [5, sec. 3-3] and the equivalence prin-

ciple [5, sec. 3-5], the field remains the same in region a

2%Y,V.

’01 ‘= ln(2hl/al) ‘
hl >=’ al

2m.v
(7)

‘

’02 = ln(2h2/az) ‘
h2>>a2.

If the potential V is set to one volt, the total excess charge

will give rise to the desired excess capacitance, i.e.,

(8)

Let @(qeJ) denote the potential due to qe, in the pres-

ence of the completed ground plane (hole closed), ++ (M)
the potential in region a due to M’ residing on the region a
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side of the completed ground

potential in region b due to &l

side. Then,

plane, and ~- (M) the

residing on the region b

+a=+(qo,)+ @(4,,)++(qe3)+++(~)
+b=@(902)+ +(%’2)+ ’+((le4)-+-(Jf). (9)

Note that the electric potential due to a sheet of steady

magnetic current is analogous to the magnetic scalar

potential due to a sheet of steady electric current. The

latter is studied in many fundamental electromagnetic field

theory books, for example, [6]. Substitution of (9) into (4)

and (5), with V being set to one volt, yields integral

equations for the excess charge densities:

o(d+@(9e3)+@+(~)

=l–+(qol) on wires 1 and 3

@(qe2)+ @(qe4) -4’(M)

=1–+(402) on wires 2 and 4

a+(qe, ) +, i3$(ge3) +, d++(lf)
c1

dn
1 6’n 1

an

a+(qe,) d@(q,4) +, W(M)
—<2

dn
—C2

d n
2

dn

13@(qo1) a~(qoz)
———cl +62 ~n

i3n
in the hole. (10)

Although gel and qe2 exist on the semi-infinitely long

wires 1 and 2, they decay to zero rapidly as one moves

away from the via. We may truncate gel and qe2 and the

boundary equations on wire 1 and wire 2 at some dis-

tances, say 3h1 and 3h z, from the via. By doing so, we

neglect the contribution to the excess capacitances from

the excess charge beyond the lengths 3h1 on wire 1 and 3h z

on wire 2. Now, the method of moments may be used to

solve for gel, qe2, qc3, qe4, and M numerically. We divide

wire 1 and wire 2 (truncated) and wire 3 and wire 4 into

subsections, assume uniform charge distribution on each

subsection, and enforce the first two of equations (10) at

the center of each subsection. Furthermore, we divide the

hole into annuluses, assume uniform circulating current

distribution on each annulus, and enforce the third of

equations (10), which is averaged over the interval from O

to 2 ~ for the azimuthal variation, at the midpoint between

the edges of each annulus. A detailed discussion of the

moment method as applied to this problem is presented in

[7].

Now, we turn to the magnetostatic case to compute the

excess inductance. Similar to the electrostatic case, we

close the hole by a conductor and place a layer of magnetic

charge density m just above the hole and – m just below

it, as is shown in Fig. 4. This m is equal to the normal

magnetic field over the hole. Again by the uniqueness

theorem and the equivalence principle, the magnetic field

remains unchanged in region a and region b if

Ht&=~b
tan (11)

is enforced, where II(! is the tangential magnetic intensity

i I Wire 3

Wwel

Region a

Ground
m

(a)

w B
-m Region b

Ground —Wwe 4

II Wire2

1~
(b)

Fig. 4, The magnetostatic problem divided into two parts. (a) The

magnetic field remains unchanged in region a if the hole is closed and

m is placed just above the hole. (b) The magnetic field remains

unchanged in region b if the hole is closed and – m is placed Just

below the hole.

over the hole in region i, i = a, b. Let H (wire i) denote

the magnetic intensity due to the electric current on wire i

in the presence of the completed ground plane for i =

1,2,3,4, H+(m) the magnetic intensity due to m above

the completed ground plane, and H-( m) the magnetic

intensity due to m below the completed ground plane. We

can write

Ha= H(wire 1) + H(wire 3) + H+ (m)

Hb = H(wire 2) + H(wire 4) – H- (m). (12)

Note that the magnetic intensity due to a layer of magnetic

charge is analogous to the electric field due to a layer of

electric charge, as discussed in [6]. Therefore, H+(m) and

H-( m) may be represented by the gradients of some

scalar functions V + (m) and V – ( m ). That is,

H+(m) =-vV+(m)

H-(m) =–vT-(m). (13)

Substitution of (12) and (13) into (11) gives

Vk+(m)+vw(m)ltan
=H(wire 1) – H(wire 2) + H(wire 3) – H(wire 4)l,a.

(14)

Equation (14), an integral equation for m, implies that

V+(m) + W -(m) equals V ‘“C, where Vine is a potential

whose gradient is the right-hand side of (14). To com-

pensate for the fact that V ‘nc is only known to within an

additive constant, we require that the total magnetic charge

associated with m vanish. The moment method may be

applied now to solve the scalar equation derived from (14)

subject to the above constraint on m.

Since there is no coupling between wire 1 and wire 3 and

between wire 2 and wire 4, we have

Al= Al(wirel)+A~(m)

A,= A,(wire2)– A;(m)

A3=A3(wire3)+A/(m)

A4=A4(wire4)– A;(m) (15)
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where A, (wire i) is the magnetic vector potential on the in the radial direction with the variation being of the form

surface of wire i due to the current 1 on wire i in the

presence of the completed ground plane, i =1,2,3,4.

‘A= P&z

(19)
Moreover, A ~ (m) is the vector potential on the surface of

wire i, i =1,3, due to m residing on the region a side of

the completed ground plane, and A,- (w) is the vector

potential on the surface of wire i, i =2,4, due to m

residing on the region b side. Note that (15) is valid only

for the vector potential component tangent to each wire

and that the other component is not of interest. Letting 1

be one ampere and putting (15) into (2), we get the excess

inductance of wire 3:

The excess inductance of wire 4 is obtained from the above

expression by replacing all the 1’s by 2’s, 3’s by 4’s, m‘s by
— m ‘s, and superscripts + by –, that is,

~e2=~,reJA2(wire2)-A20)~~+~ire$4(~re4)~1

-~ire$;(m)~z-~ire$;(m)~f. (17)

Because of the small radii of the wires, the current on the

surface of each wire may be approximated by a filamen-

tary current 1 on the axis of the wire. Thus the first two

integrals in (16) can be evaluated analytically [2]. The last

two integrals may be expressed in terms of magnetic

intensities according to Stokes’s theorem. The result is

m~=~2h1n %
— –4h1+a1+a3

‘1 4m 1 a3 I
+p,~~~(m)ds (18)

1

where in the last integral, SI is the planar surface bounded

by the axes of wire 1 and wire 3 and the ground. The

subscript n on H+(m) denotes the component normal to

SI and pointing into the paper. The expression for Lez is

similar to (18) in form. The excess inductance of the via is

then the sum of Lel and Lez.

where p is the radial distance from the center of the hole

and K is a constant determined by

JEA. dl=l. (20)

The integration path is chosen in the radial direction from

the surface of wire 3 to the edge c~f the hole. Substitution

of (19) into (20) gives

1
K= (21)

ln(a,/a, +fi/a,)2-l ) “

Thus the magnetic current is circulating and its amplitude

is given by

1 1
M= (22)

ln(a5/a3+~-) PJ- “

In the magnetostatic case, the normal magnetic field in

the hole is negligible. Hence the magnetic charge may be

neglected and a closed form for the excess inductance of

the via is obtained. That is,

where RI and K‘ are COIMMItS. Approximately, K1 = K2 =

0.5413.
In Figs. 5-7, the normalized excess capacitance of the

upper via (wire 3) C,l/( (la ~) is plotted. The curves are

also applicable to the normalized excess capacitance

C,z /(c ~as) of the lower via (wire 4) if all the subscripts 1
are replaced by 2. In Figs. 8 and 91 the normalized excess

inductance Le/(2pla ~) of a symmetric via is plotted. A via
is symmetric if (Al, al, ~1, pl) = (h2, a2, E2, p2). These plots

can also be viewed as plots for the normalized excess

inductance L=l/(pl a ~) of the upper via. If the subscripts 1

are replaced by 2, they become plots of L,2/(p ‘a3), the

normalized inductance of the lower via. In Figs. 10 and 11

the characteristic admittance VII: of a symmetric via is

plotted. Here ql is the intrinsic impedance of the medium.

The characteristic admittance of the via is defined as

III. NUMERICAL RESULTS AND DISCUSSION

In order to implement the computer program on a
Y,= {m)/Le . (24)

PC/AT, we simplify the computation by choosing only

one expansion function for the magnetic current and none
If a TEM wave approaches the via along wire 1 and if

for the magnetic charge. This is justified as follows. Since
wire 2 is terminated with a matched load ( Y02), then it can

the radius of the hole is very small compared to the heights
be shown that the least reflection will occur when

Izl and h‘, the couplings (electric and magnetic) through
Ye==;. (25)

the hole between wire’ 1 and wire 2 are negligible to the

first-order approximation. In other words, the fields in the

hole are primarily from the via (wire 3 and wire 4). In the 1Note that the curves in Figs. 8 and 9 are plotted under the assumption

that the hole is small in relation to the heii~hts h ~ and h*. To emphasize
electrostatic case, the tangential dt?CtriC field in the hole k this and to be ~on~l~tent with other plots, we add the restriction u ~ = 2a ~.
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excess capacitance of the upper via ( a ~ = 2a ~,
k=al/a3).
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Fig. 6. Normalized excess capacitance of the upper via (al = a3, k =

a5/a3).

To see this, we notice that the voltage reflection coefficient

where ~
ce2) <1.

130] Cel

20~-T-.111 n., +l%

10 ?0 30 m 50 60 70

K — 10 ----- 25 -— 40 -.— 55 —— ,0

Fig. 7, Normalized excess capacitance of the upper via (as = 2U3,
k = Al/al).

l,o -
Le

/’
2!41.3,00-

//

/“
90- //’

,/80-
,/’ ~,,

70, //
/

/“

60-
//’ ,,/-’

,/’ ./

50- ./’
/’

./”
./”’

,/’
40 ,,/- .,’ -

/’ ./ /.

30-
/’ -/” ./-

/’ /- ./. /-’

20- ,.” ‘ .,--=
. . ..-------”

/ /“
/.-’ . . . . . . . ..----- ””-”-

,~.. /-’
/./- . . . ..-------- ”-

$0- .<//-<:- . . . . . . . . . ..------------”,.
~lal

0,--.7-.7..___,

10 20

K —,25

Fig. 8. Normalized

at the T plane on

30 40 50 60 ,0

----- 0.75 -— ,.25 --— 1 75 —— 2.25

excess inductance of d symmetric via (as = 2 a3,
k = al/a3).

wire 1 in Fig. 2 is given by

Yol(l – (d2Lece2)– Y02(1 – U%ecel)

r=
j05, “oyo2-:[c,(l-@2:2)+c2(1-02~)l(26,

Yol(l – LJ2L,ce, ) + Y02(1 – u2Lec,1)

jaLe “oyo2+tlcel(1-@2:2)+c2(1-02~)l
is the angular frequency. Usually, U2L,( C,l +

The above expression then reduces to

Yol – Y02+ jCJLeYo1Y02 – jcc ( Cel + C,,)
r=

Yol + Y02 + jtiLeYo1Y02 + jti (Cel + Ce2) “
(27)

When (25) is satisfied, the magnitude of the numerator of

(27) assumes its minimum, the magnitude of the de-
nominator is roughly Yol + Y02, and thus Ir I is minimized.

The reflection from the via is minimized. Furthermore, if

(25) is satisfied and if the system is symmetric (Yol = Y02),

there is no reflection from the via. That is, all of the power

from the incident wave will be transmitted through the via

to the matched load. In this case, the via is called reflec-

tionless.

To design a reflectionless via, consider the following

numerical example. Suppose that

hl=h2=1.00cm

al=a2=0.10cm

a5 = 2a3 (28)

and that we wish mini~ze reflection from the via. Since

27T 2.10
Yol = Y02= (29)

qln(2hl/al) = q

the reflectionless condition becomes

qYe=2.10. (30)
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Fig. 9. Normalized excess inductance of a symmetric via (as = 2 a3,
k = l?l/ul).

Fig. 10. Normalized charactens~ic admittance of a symmetric via ( as =
2U3, k=al/a3).
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Fig. 11. Normalized characteristic admittance of a symmetric via (as =
2a3, k=hl/al).

Using the k =10 curve in Fig. 11, we find that the above

condition is satisfied when a ~ = 0.034 cm. Hence, given

(28), the via will be reflectionless when the radius of the

via is 0.034 cm.
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