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Quasi-Static Analysis of a Microstrip Via
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Abstract —The equivalent circuit of a via which connects two semi-
infinitely long transmission lines through a circular hole in a ground plane
is considered. The -type equivalent circuit consists of two excess capaci-
tances and an excess inductance. They are quasi-static quantities and thus
are computed statically by the method of moments from the integral
equations. The integral equations are established by introducing a sheet of
magnetic current in the electrostatic case and a layer of magnetic charge in
the magnetostatic case. Parametric plots of the excess capacitances, the
excess inductance, and the characteristic admittance of the via are given
for reference.

1. INTRODUCTION

HE GEOMETRY of the problem to be considered in

this paper is shown in Fig. 1. Two semi-infinitely long
transmission lines, wire 1 and wire 2, are connected by a
via through a hole in a conducting ground plane. The via
consists of wire 3 and wire 4. The radii of wires 1, 2, 3, 4,
and the hole, denoted a,, a,, a;, a,, and a, respectively,
are very small compared to the heights, 4, and 4,, of wire
1 and wire 2 with respect to ground. The media in the
upper region (region a) and the lower region (region b)
may be different. Let us assume that (e;, ;) and (e,, u,)
are the constitutive constants for region a and region b,
respectively. Also, the media and all the conductors are
perfect (lossless). For simplicity, the equivalent circuit of
the via is assumed to be 7-type, as is shown in Fig. 2. In
Fig. 2, ¥, is the characteristic admittance of wire 1 above
the ground plane and Y, is the characteristic admittance
of wire 2 below the ground plane. The circuit of Fig. 2 is
valid when only a small portion of the line voltage is
dropped across L, and when only a small portion of the
line current is shunted through C,; and C,,. We desire to
determine the capacitances C,; and C,, and the inductance
L. The problem described here is of practical interest. For
example, printed circuits on different sides of a ground
plane inside computers are often connected by a via
through a hole in the ground plane. The related problems
of the connection of two perpendicular strips above a
ground plane [1], the connection of two parallel wires
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Fig. 1. The geometrical structure of the problem.
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Fig 2 The equivalent circuit for the problem.
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above a ground plane [2]. and the connection of two
parallel strips above a ground plane [3]. [4] were previously
considered.

The equivalent capacitance C,; of the portion of the via

above the ground plane is a quasi-electrostatic quantity
and is defined as [2], [3]

+Q,—1
C,= lim QLQ_31&_ (1)
PR V

Here Q, is the total electric charge on the portion of wire 1
of length /,, Q, is the total charge on wire 3, V is the
constant voltage maintained at the surface of the wires
with respect to ground, and ¢, is the uniform charge
density on wire 1 far away from the via, or equivalently,
the charge density required to raise the potential of wire 1
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to V volts if the hole were closed, wire 3 were removed,
and wire 1 were extended to infinity. Henceforth in the
electrostatic case, charge density means charge per unit
length. However, since the numerator of the right-hand
side of (1) approaches a constant that is very small com-
pared to O, and l,qy, as /; becomes large, numerical
calculation of C, from (1) would result in significant
error. To avoid this, we subtract the uniform charge den-
sity from the total charge density so that the difference,
called the excess charge density, is the unknown in the
boundary integral equations. The equivalent capacitance
C,, is then the sum of the total excess charge on wire 1 and
wire 3 if the voltage V is set to one volt. Hence C,; is also
called the excess capacitance of the upper part of the via
(wire 3). In a similar manner, the equivalent capacitance
C,, is defined and is called the excess capacitance of the
lower part of the via (wire 4).

The equivalent inductance L, is a quasi-magnetostatic
quantity defined by [2], [4]

1
Le:Y{Lirel(Al_Alo).dl+‘£vire3A3'dI}
1
+—{/ (A, — Ay)-di+ A4-dl} (2)
I wire 2 wire 4

where A, is the total magnetic vector potential on wire i,
i=1,2,3,4, due to the steady electric current of filamen-
tary strength I flowing from wire 1 through the via to wire
2. A,, is the uniform magnetic vector potential on wire 1
far away from the via or, equivalently, the magnetic vector
potential that would be produced by an I ampere current
on wire 1 if the hole were closed, wire 3 were removed, and
wire 1 were extended to infinity. 4,, is similarly defined.
The sum of the four integrals in (2) is a line integral from a
point far to the left on the surface of wire 1 to a point far
to the right on the surface of wire 2. Equation (2) is
derivable from [4, eq. (1)]. L, is also called the excess
inductance of the via. For convenience, we call the first
bracketed term the excess inductance of the upper via
(wire 3) and the second bracketed term the excess induc-
tance of the lower via (wire 4).

II. FORMULATION

The excess capacitances C,; and C,, are quasi-electro-
static quantities and thus computed in the electrostatic
case. As shown in Fig. 3, we first close the hole by a
conductor and place a sheet of magnetic current M just
above the hole and — M just below it. Steady in that it has
no surface divergence, this magnetic current is related to
the electric field E, over the hole by

M=E,Xn (3)
where n is the unit vector normal to the ground plane and
pointing upwards (from region b to region a). By the
uniqueness theorem {5, sec. 3-3] and the equivalence prin-
ciple [5, sec. 3-5], the field remains the same in region a
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Fig. 3. The electrostatic problem divided into two parts. (a) The electric

field remains unchanged in region a if the hole is closed and M is
placed above the hole. (b) The electric field remains unchanged n
region b if the hole is closed and — M is placed just below the hole.

and region b if
d¢? d¢°
. 4
€ an € an (4)
where ¢' is the electric potential in region i, i=a,b. In

addition to (4) the following boundary conditions must
also be satisfied:

¢ =V
¢ =V

in the hole

on wires 1 and 3

(5)

Neither wire 3 nor wire 4 is connected to the ground plane
in Fig. 3.

The total charge density may be recognized as the sum
of the excess charge density and uniform charge density,
ie.,

on wires 2 and 4.

4ot 90 on wire 1
4.3 on wire 3
= . 6
q q.4 on wire 4 ©)
4.+ 4 on wire 2

where the subscript e on ¢ denotes excess charge density.
g, and g, are known and are given by

2ae,V
Go1 = n(2h, /a;)’ hy > a,

2me,V O
402=m, hy> a,.

If the potential V' is set to one volt, the total excess charge
will give rise to the desired excess capacitance, i.e.,

Cel‘_‘/

da dl + Jr . 93 dl

wire 1 wire 3
Co=| dodl+ I Geadl (8)

Let ¢(q,,) denote the potential due to g,, in the pres-
ence of the completed ground plane (hole closed), ¢ (M)
the potential in region a due to M residing on the region a
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side of the completed ground plane, and ¢ (M) the
potential in region b due to M residing on the region b
side. Then,

" =¢(go1) + ¢(q.) + ¢(q,5)+ 7 (M)

"= (q02) + ¢(gen) + 9(q.4) — ¢~ (M). (9)
Note that the electric potential due to a sheet of steady
magnetic current is analogous to the magnetic scalar
potential due to a sheet of steady electric current. The
latter is studied in many fundamental electromagnetic field
theory books, for example, [6]. Substitution of (9) into (4)
and (5), with V' being set to one volt, yields integral
equations for the excess charge densities:

¢(qa)+ ¢(g.5)+ 0" (M)
=1-¢(q0)
$(9e2) + ¢(qea) = 6™ (M)
=1-6(q¢,)
“a¢;?0'+“8¢;?9‘+“3¢aSW)
I9(q.,) e 3$(q,q) te ¢~ (M)
an 2 n 2 9n
9¢(qo1) 3¢(q02)
an Te dan

Although g¢,, and ¢,, exist on the semi-infinitely long
wires 1 and 2, they decay to zero rapidly as one moves
away from the via. We may truncate g, and g,, and the
boundary equations on wire 1 and wire 2 at some dis-
tances, say 3k, and 3k,, from the via. By doing so, we
neglect the contribution to the excess capacitances from
the excess charge beyond the lengths 3k, on wire 1 and 34,
on wire 2. Now, the method of moments may be used to
solve for q,,, q.,. 4.3, 4,4, and M numerically. We divide
wire 1 and wire 2 (truncated) and wire 3 and wire 4 into
subsections, assume uniform charge distribution on each
subsection, and enforce the first two of equations (10) at
the center of each subsection. Furthermore, we divide the
hole into annuluses, assume uniform circulating current
distribution on each annulus, and enforce the third of
equations (10), which is averaged over the interval from 0
to 27 for the azimuthal variation, at the midpoint between
the edges of each annulus. A detailed discussion of the
moment method as applied to this problem is presented in
[71

Now, we turn to the magnetostatic case to compute the
excess inductance. Similar to the electrostatic case, we
close the hole by a conductor and place a layer of magnetic
charge density m just above the hole and — m just below
it, as is shown in Fig. 4. This m is equal to the normal
magnetic field over the hole. Again by the uniqueness
theorem and the equivalence principle, the magnetic field
remains unchanged in region a and region b if

a __ b
Htan - Htan

on wires 1 and 3

on wires 2 and 4

—€,

in the hole. (10)

=—-€1

(11)

is enforced, where H,, is the tangential magnetic intensity
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Fig. 4. The magnetostatic problem divided into two parts. (a) The
magnetic field remains unchanged in region a if the hole is closed and
m is placed just above the hole. (b) The magnetic field remains
unchanged in region b if the hole is closed and — m is placed just
below the hole.

over the hole in region i, i=a,b. Let H (wire ) denote
the magnetic intensity due to the electric current on wire i
in the presence of the completed ground plane for i=
1,2,3,4, H* (m) the magnetic intensity due to m above
the completed ground plane, and H ™ (m) the magnetic
intensity due to m below the completed ground plane. We
can write

H*= H(wire 1)+ H(wire 3)+ H" (m)

H®=H(wire 2)+ H(wire 4)— H (m).  (12)
Note that the magnetic intensity due to a layer of magnetic
charge is analogous to the electric field due to a layer of
electric charge, as discussed in [6]. Therefore, H* (m) and

H™ (m) may be represented by the gradients of some
scalar functions ¥*(m) and ¥~ (m). That is,

H (m)=-v¥*(m)
H (m)=-v¥ (m).
Substitution of (12) and (13) into (11) gives
vV (m)+v¥(m)|,,
= H (wire 1) — H(wire 2) + H(wire 3) — H(wire 4)| .
(14)
Equation (14), an integral equation for m, implies that
¥ (m)+ ¥~ (m) equals ¥'™, where ¥'™ is a potential
whose gradient is the righj[-hand side of (14). To com-
pensate for the fact that ¥ is only known to within an
additive constant, we require that the total magnetic charge
associated with m vanish. The moment method may be
applied now to solve the scalar equation derived from (14)
subject to the above constraint on m.

Since there is no coupling between wire 1 and wire 3 and
between wire 2 and wire 4, we have

A=A, (wire 1)+ 4, (m)
A,=A,(wire2)— A5 (m)
Ay = Ay(wire 3)+ A5 (m)
A,= A, (wired)— A; (m)

(13)

(15)
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where A4 (wire i) is the magnetic vector potential on the
surface of wire i due to the current I on wire i in the
presence of the completed ground plane, i=1,2,3,4.
Moreover, 4, (m) is the vector potential on the surface of
wire i, i=1,3, due to m residing on the region a side of
the completed ground plane, and A, (m) is the vector
potential on the surface of wire i, i=2,4, due to m
residing on the region b side. Note that (15) is valid only
for the vector potential component tangent to each wire
and that the other component is not of interest. Letting
be one ampere and putting (15) into (2), we get the excess
inductance of wire 3:

Le1=f 1(Al(wire 1)—A10)~dl+f A, (wire 3)-dl

wire 3

+ A (m)-dl+

wire 1

(16)

The excess inductance of wire 4 is obtained from the above
expression by replacing all the 1’s by 2’s, 3’s by 4’s, m’s by
— m’s, and superscripts + by —, that is,

Le2=f (Az(wire2)—A20)-dl+f

A (m)-dl.

wire 3

A (wire 4)-dl

wire 2 wire 4
-/ A;(m)-dl—f A5 (m)-dl. (17)
wire 2 wire 4

Because of the small radii of the wires, the current on the
surface of each wire may be approximated by a filamen-
tary current I on the axis of the wire. Thus the first two
integrals in (16) can be evaluated analytically [2]. The last
two integrals may be expressed in terms of magnetic
intensities according to Stokes’s theorem. The result is

4h
L= %l2hlln(a—l)—4hl+al+ a3]
3

+u1fSH,T(m) ds (18)

where in the last integral, S, is the planar surface bounded
by the axes of wire 1 and wire 3 and the ground. The
subscript n on H*(m) denotes the component normal to
S, and pointing into the paper. The expression for L., is
similar to (18) in form. The excess inductance of the via is
then the sum of L, and L,,.

Il

In order to implement the computer program on a
PC/AT, we simplify the computation by choosing only
one expansion function for the magnetic current and none
for the magnetic charge. This is justified as follows. Since
the radius of the hole is very small compared to the heights
h, and h,, the couplings (electric and magnetic) through
the hole between wire' 1 and wire 2 are negligible to the
first-order approximation. In other words, the fields in the
hole are primarily from the via (wire 3 and wire 4). In the
electrostatic case, the tangential electric field in the hole is

NUMERICAL RESULTS AND DI1SCUSSION
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in the radial direction with the variation being of the form

K
E,— (19)

where p is the radial distance from the center of the hole
and K is a constant determined by

[E;a=1. (20)

The integration path is chosen in the radial direction from
the surface of wire 3 to the edge of the hole. Substitution
of (19) into (20) gives

1

ln(aS/a3 +y(as/a;)’~1 ) .

(21)

K=

Thus the magnetic current is circulating and its amplitude
is given by

1 1

: . (22)
1n(a5/a3 +\/(a5/a3)2*—1) p\/l—(p/a5)2

M=

In the magnetostatic case, the normal magnetic field in
the hole is negligible. Hence the magnetic charge may be
neglected and a closed form for the excess inductance of
the via is obtained. That is,

151 hy
Le = E‘;hlln(nlaj

) h,
+§;hzln(ic2a—3) (23)

where k; and «, are constants. Approximately, k; =k, =
(.5413.

In Figs. 5-7, the normalized excess capacitance of the
upper via (wire 3) C,/(¢,a,) is plotted. The curves are
also applicable to the normalized excess capacitance
C,, /(e,as) of the lower via (wire 4) if all the subscripts 1
are replaced by 2. In Figs. 8 and 9* the normalized excess
inductance L, /(2p,a,) of a symmetric via is plotted. A via
is symmetric if (hy, a;, €, py) = (h,, a5, €5, f15). These plots
can also be viewed as plots for the normalized excess
inductance L /(u,a;) of the upper via. If the subscripts 1
are replaced by 2, they become plots of L, /(p,a3), the
normalized inductance of the lower via. In Figs. 10 and 11
the characteristic admittance 7,Y, of a symmetric via is
plotted. Here 7, is the intrinsic impedance of the medium.
The characteristic admittance of the via is defined as

Ye=V(Ce1+Ce2VL—e'

If a TEM wave approaches the via along wire 1 and if
wire 2 is terminated with a matched load (Yy,), then it can
be shown that the least reflection will occur when

(24)

Y, = Y01Y0;- (25)

I Note that the curves in Figs. 8 and 9 are plotted under the assumption
that the hole is small in relation to the heights h; and k,. To emphasize
this and to be consistent with other plots, we add the restriction a5 = 2aj;.
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Fig, 5. Normalized excess capacitance of the upper via (as=2as,
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Fig. 6. Normalized excess capacitance of the upper via (a; = a3, k =
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To see this, we notice that the voltage reflection coefficient
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Fig. 7. Normalized excess capacitance of the upper via (as=2a;,
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Fig. 8. Normalized excess inductance of 4 symmetric via (as=2as,
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at the T plane on wire 1 in Fig. 2 is given by

Yo (1= w’L,C,,) — Yo (1— &L C, 1 w’LC, w’LC,
01( 2? 02( 1) +Y01YY02_‘_“ Ce 1_ 2 +C62 1_ 1
. joL, L, 2 2 2
Yy (1-w’L,C,,) + Yy (1- 2L .C,y) 1 WL C,, WL ,C, (26)
JoL, + Y5 Yo, + ~L—é C,il1- ‘—T—' +C,,|1- —'2——

where w is the angular frequency. Usually, «w’L,(C, +
C,,) < 1. The above expression then reduces to

= Yoo = Yoo + joL, Yy Y — jw (Cel + CeZ)
Yo + Yoo + jwL Yy Yo, + jw(Cy +C,y)

(27)

When (25) is satisfied, the magnitude of the numerator of
(27) assumes its minimum, the magnitude of the de-
nominator is roughly ¥, +Y,, and thus |I'| is minimized.
The reflection from the via is minimized. Furthermore, if
(25) is satisfied and if the system is symmetric (Y, = Y;;,),
there is no reflection from the via. That is, all of the power
from the incident wave will be transmitted through the via
to the matched load. In this case, the via is called reflec-
tionless.

To design a reflectionless via, consider the following
numerical example. Suppose that
hi=h,=1.00cm
a,=a,=0.10cm

as=2a,

(28)

and that we wish minimize reflection from the via. Since
27 2.10
o @hJa) @)
the reflectionless condition becomes
nY, =2.10.

Yo =
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Fig. 9. Normalized excess inductance of a symmetric via (a5= 2a,,
k=h/ay).
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Fig. 10. Normalized characteristic admittance of a symmetric via (a5 =
2as, k=4a,/a;).
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Fig. 11. Normalized characteristic admittance of a symmetric via (a5 =
2a’37 k= hl/al)'

Using the k =10 curve in Fig. 11, we find that the above
condition is satisfied when a;=0.034 cm. Hence, given
(28), the via will be reflectionless when the radius of the
via is 0.034 cm.
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